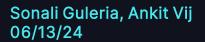


MOSAIC AI VECTOR SEARCH: WHAT, WHY AND HOW



DATA⁺AI SUMMIT

©2024 Databricks Inc. — All rights reserved

a 1

"Ever tried finding a slack message but couldn't remember the exact terms?"

Agenda

- Introduction to Vector Search
- When not to use?
- What is Mosaic Al Vector Search
- Best Practices for Path to Production
 - Data Ingestion
 - Vector Search Retrieval
- Conclusion
- Q/A

Vector Search Search with understanding

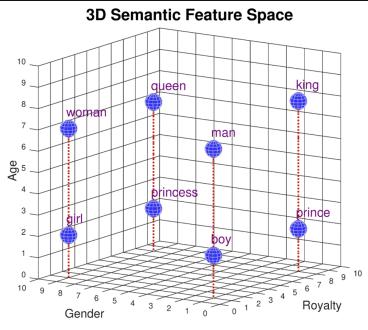
Search based on semantic closeness or inherent characteristics using embeddings

Data

Embedding model

 $\begin{cases}
 1 & 1 & 0 \\
 0 & 0 & 0 \\
 1 & 0 & 1
 \end{cases}$

Vector embeddings



Source: https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html

Vector Search

Use Cases

- RAG systems like chatbots
- Recommendation systems
- Anomaly Detection
- Image and Video Recognition
- Drug Discovery
- "Classic" use-cases such as Personalization, product search
- and so on...

What it is not

Not an exact match

- Standard Database Look-up
- Conventional keyword search
 - Metrics
 - Aggregations
 - Other Observability...

6

Main Components for Vector Search

Ingestion

- Fast and Fault Tolerant
- Real-time Updates and Change Detection
- Effective Data Preprocessing
- Highly Scalable

Retrieval

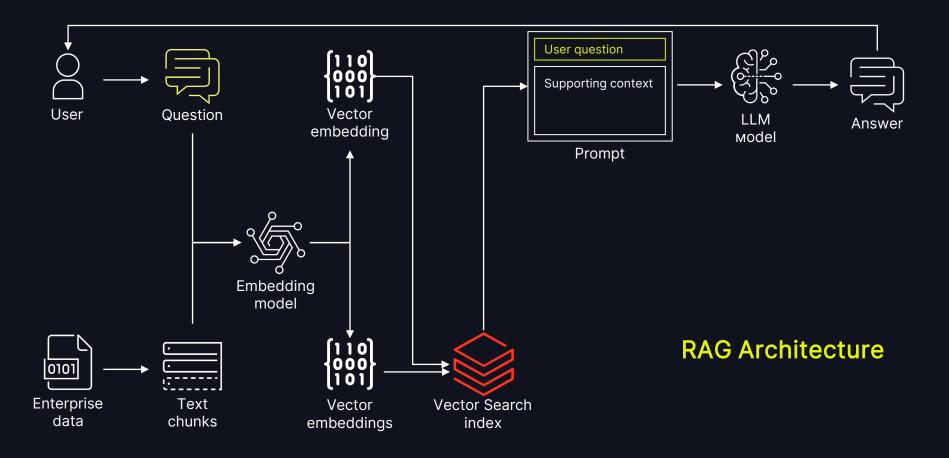
- Quality results with high Recall
- Low Latency
- Effectively use the Metadata as filters
- Additional capabilities like Hybrid search

Mosaic AI Vector Search

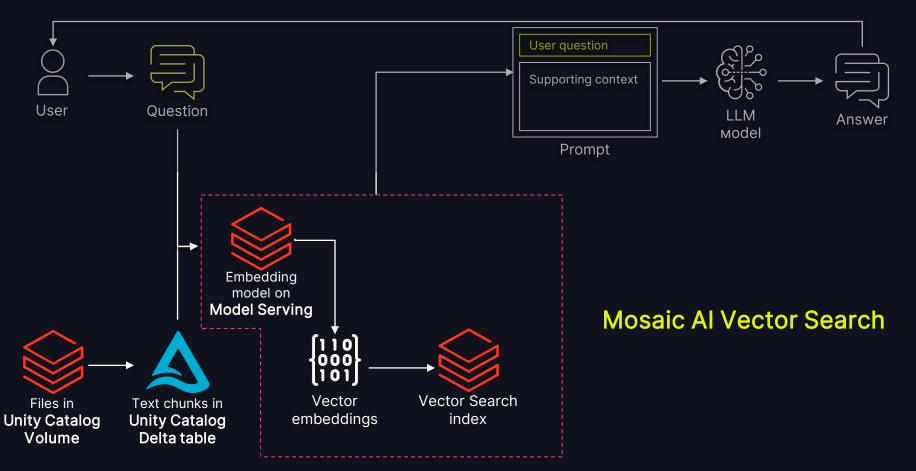
Simplifying Semantic Search

Serverless and Highly Performant Search Engine designed for Production applications.

- Simple and Fully Managed
- Native Lakehouse Integration
- Fast and Scalable
- Built in Governance via Unity Catalog

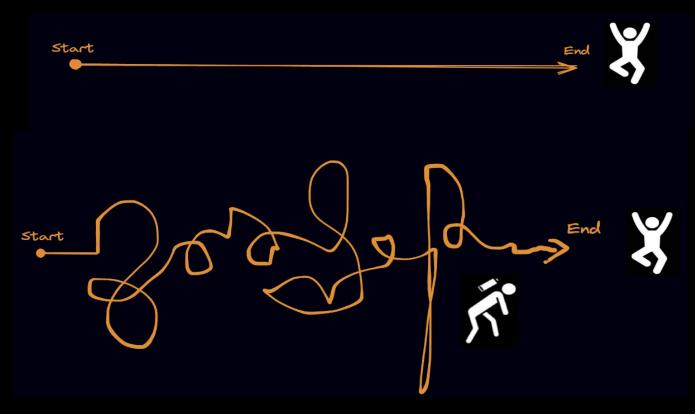


9



But Path to Production is Hard...

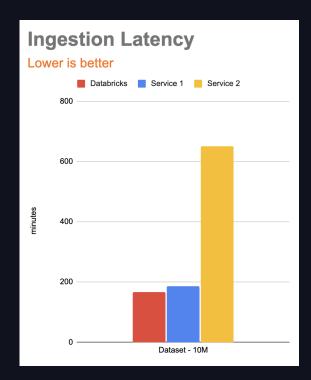
Expectation vs Reality



Managing & Scaling Ingestion

Databricks does all of the heavy lifting

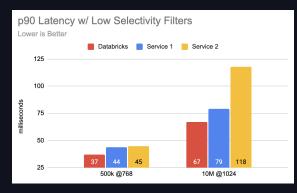
- Use Delta Sync Indices
 - Auto-syncs w/ source Delta Table
 - Auto-scales for different dataset sizes
 - Columns in Delta Table are filters
 - Integrated with Model Serving for embedding generation
- Triggered vs Continuous
- Be cautious about overwriting source tables
- Assess the performance of Model Serving endpoints

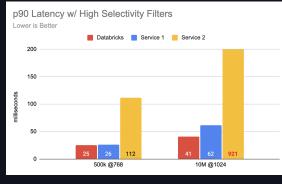


* As of June 2024

Improving Retrieval Efficiency

Improving query latency





* As of June 2024

- Identify the source of latency
 - Be cognizant on fetching large number of results and additional metadata columns
- Ensure you are using the latest SDK version
- Use Service Principals for network optimized routes in Production.
- Assess the performance of model serving endpoints

Mastering Chunking

Elevate Your Search

- Chunk size- Too Big or Too Small?
- Fixed vs Dynamic size
- Element based- by section, table or sentence
- Semantic Chunking
- Include metadata with chunks (especially unstructured data)
- Chunking Overlays

Credit Line Increase?

Incorrect Chunking Example

User: Can I get a credit line increase?

System: You have a preapproved offer to increase your credit limit.

Actual Response

Depending on the evaluation of your profile, you may be eligible for a credit line increase. You will have a better chance of an increase if you meet the following requirements:

- If you have a good credit history
- You do not have any late payments in the last 3 years.
- You have a high income relative to your existing debt obligations
- You have a pre-approved offer to increase your credit limit.

16

Embedding Model Selection

Selecting the Right Model for High Quality Embeddings

- Different data types needs different embedding models.
- (Re)Verify the Embedding Model:
 - Similar Training Data
 - Truncated chunks- check context window
 - Dimension Size
- Task specific Models.
- Check for Normalization.

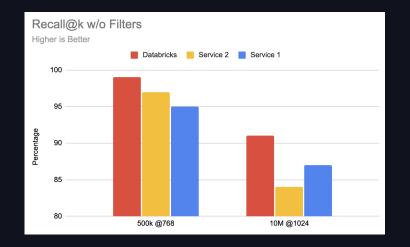
Retrieval English leaderboard 🔎				
 Metric: Normalized Discounted Cumulative Gain @ k (ndcg_at_10) 				
 Languages: English 				
Rank 🔺	Model	Model Size (Million ▲ Parameters)	Memory Usage (GB, fp32)	Average 🔺
1	<u>NV-Embed-v1</u>			59.36
2	SFR-Embedding-Mistral	7111	26.49	59
3	voyage-large-2-instruct			58.28
4	<u>gte-large-en-v1.5</u>	434	1.62	57.91
5	<u>GritLM-7B</u>	7242	26.98	57.41
6	<u>e5-mistral-7b-instruct</u>	7111	26.49	56.89
7	LLM2Vec-Meta-Llama-3-supervis	7505	27.96	56.63
8	voyage-lite-02-instruct	1220	4.54	56.6
9	<u>SE_v1</u>			56.55
10	gte-Qwen1.5-7B-instruct	7099	26.45	56.24

DATA'AI SUMMIT

d

Enhancing Retrieval Accuracy

- Hybrid Search.
- Use filtering on accompanying columns or metadata.
- Re-ranking.
- Verify the embedding model for questions- automatic for Managed delta sync.



Some More Best Practices

- Use Unity Catalog to leverage unified governance.
- Evaluate **effectively**.
- Leverage Lakehouse Monitoring and system tables.
- Enable **automatic Inference** to log and audit the requests and responses.
- Make sure the model endpoint is properly configured and has enough resources.

Conclusion

Empowering Innovation, Unlocking Potential, and Shaping the Future of Intelligent Applications

Vector Search is still a data and ML problem.

- Iteration is going to be the key.
- Evaluate and Re-evaluate methodology.

Pick a great technology partner, who can solve majority of the scalability and performance issues for you.

Call to Action

https://ai-cookbook.io/

Thank you!